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Abstract: A general density matrix formulation for describing NMR line shapes of exchanging systems under conditions of 
double resonance (one weak, o>2, and one strong, a>i, field) is presented. It is shown that the double resonance spectrum for 
the example under consideration is about an order of magnitude more sensitive to slow exchange rates than the equivalent 
low power single resonance spectrum. Examples of effects in double resonance spectra such as line splitting, line distortion, 
and varying peak intensities are illustrated. An additional weak "absorption" at the frequency 2OJI - to2 is shown to exist. 

N M R line shapes for chemically reorganizing systems1-5 

have been utilized to obtain rate data and activation param
eters for a variety of intramolecular rearrangements such as 
rotation, pseudorotation, conformational interconversion, as 
well as a wide collection of chemical exchange process.2^5 

Note that these kinetic parameters extricated from N M R 
data apply to systems at equilibrium. 

So far N M R line-shape analysis has been widely applied 
only for conditions of cw low rf power.6-9 The theory has 
been generalized, using the Permutation of Indices Method 
(PI) to cover all typical exchange steps as well as combina
tions of these.10 Recently this theory has been extended to 
include conditions of high rf field (saturation) employing a 
linearization procedure called Selective Neglect of Bilinear 
terms (SNOB).11 

Now in this paper, we turn our attention to nuclear mag
netic double resonance (NMDR) line shapes of chemically 
exchanging systems.12-14 The same SNOB procedure origi
nally developed to calculate the high rf response1' will also 
be utilized in the course of the double resonance calcula
tions. 

Multiple resonance has been the subject of intensive in
vestigation. The techniques of NMDR have been used to 
unravel and simplify complicated spectra by means of Ov-
erhauser effects, by the introduction of extra fine structure 
into a spectrum as well as completely decoupling one set of 
nuclei from another.14-20 With a few exceptions,12-14 most 
existing treatments of double resonance handle only line po
sitions. 

It will be shown that double resonance line-shape theory 
permits a clearer qualitative understanding of the double 
resonance spectrum even without exchange. For instance it 
is easier to understand, as shown below, how, in a two spin 

system, the extra fine structure which appears because the 
large rf field causes a breakdown of the allowed Am = ±1 
selection rules now permits Aw = O, ±2 transitions. Also 
we shall predict the existence of extra resonance peaks from 
a response to a mixed frequency, the so-called pseudoab-
sorption. 

The exact shape of the absorption carries in it informa
tion on relaxations including exchange phenomena. In prin
ciple one expects that selective decoupling should make the 
N M R line shape more sensitive to the exchange rate than in 
single resonance N M R spectra. Two papers dealing with 
specific examples of these effects have appeared.12-14 

In this paper, we describe in section I the general density 
matrix theory for NMDR line shapes of any exchanging 
system including those where several different exchange 
processes take place at the same time. The theory allows for 
individual nuclear relaxation times employing the relaxa
tion operator described by us before.10 This theory is ap
plied to a model exchanging system. The density matrix 
equations are derived, and an expression is obtained for the 
absorption. Section II contains an interpretation of double 
resonance spectra and section III describes some line 
shapes. Appendix I consists of a glossary of symbols to ease 
the reader's progress through this article. 

I. Density Matrix Equations for an Exchange System Under 
Conditions of Double Resonance 

The appropriate density matrix equation for a system 
undergoing chemical exchange is 

p = i[p, X] + Rp + Ep (1) 

For double resonance in the laboratory frame, the Hamilto-
nian is given by 
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Z," sin W1Jf] + Y. CZ2[Z4* cos w2t + I? sin co^] (2) 

where coo, «1 (102), and ĉ i (^2) stand for chemical shift, fre
quency, and strength of the irradiating fields, respectively 
and i,j . . . sums over the spins. The operator for intermolec-
ular relaxation (R) is given as10 

)5 = /[j5,K0]- M [£.(,•; + , - , , I _lA 

Z/V""2""1" + Ẑ g* "^""l', p + Zip + Ep (13) 

HP= E ^ W . W . P - PeJ] + 

^ - [/,», [i,», p - PeJ] + Y-[IfAW,P - P J ] (3) 
•Mi 1U 

where eq stands for equilibrium and the reorganization 
term Ep is 

£ S p _ P s ,(after exchange) - p3" / ^ 

where sp stands for species. As described by us previously, 
the exact form which Ep takes is determined by the mecha
nism of the reorganization process and is different for each 
typical exchange step.10 Space does not allow a repetition of 
all these possibilities. Instead, in this section we treat one 
model example, that of an AB molecule exchanging frag
ment B with the outside world (B') 

AB + B' = ^ AB' + B 
*>-2 

(5) 

where A, B, and B' each contain one proton, and fragments 
B and B' are chemically identical. As discussed in ref 10, 
the product representation is defined as 

AB B' species 

ab c wavefunction 

(6) 

(7) 

Use of the Permutation of Indices method yields p(after ex
change), called p a e as 

{ab\p^ae\a'b<) = ZPAB°c«cPB\,b> 

and 

(c\P^Jc) = Z P AB 

(8) 

O) 

recalling from above the chemical identity of AB to AB' 
and of B to B'. 

The decoupling signal ^1 is taken to be strong, while that 
of the observing frequency u>2 is weak. To treat fa to all or
ders in tj], we go into a coordinate system rotating at fre
quency p)i. The density matrix p in the rotating system is 
obtained as 

-pAB = e i w i " A B * p e - i u i f / A B * 

where 

X V + h 

(10) 

(11) 

The Hamiltonian in the rotating coordinate system is given 
by 

X Z K - ^1)V + i X ; V - o + 

UJ 

\fa Z (J\ + f<) + ^ L W'" 2"" 1" + 
/ V * ' ^ - " ! " ) = K0 + 3CRF1 + 5CRF2 (12) 

and the density matrix equation for one species is given by 

The density matrix equations for the exchanging system de
fined in (5) are 

p-AB = ^ A B , 3 c 0
A B ] - ^ [ r A B + z-A B , pA B ] - '-& x 

[/•ABe-1<u2-ui" + I-ABe"u*-uiu, pAB] +RpAS + £p"AB 

(14) 

p-*' = i[p*', K0
3'] - l-f[i\. + /v.P8*] - T2 x 

[7*B.c- ,tw2-wi>* + I-B,ei{u2-U^, p^'] + RpB' + EpB' 

(15) 

Since we want only the low power response to the rf field 
(tf>2), we solve (14) and (15) by writing 

pAB _ p ' A B + pH.ABgiCo.j.ojjJt + P-ABg-J(U 2 -U 1 X ( J g ) 

p B ' = p ' B + p* B V ( w 2- w i» + pB'e-iiu2-uiu (17) 

where p' is the solution of (1) with fa - 0, and the p± are 
linear in fa. We also note that, as p has to be Hermitian, it 
follows that 

(P*)1 + P- (18) 

Thus we only need to solve for p + A B and p + B ' or for p _ A B 

and p~w. 
What we will eventually want to evaluate is the magneti

zation in the laboratory system. The x component of this 
magnetization is given by 

Mx = (AB)TrpABZAB* + (B') Trp'B'ZB,* (19) 

where (AB) means concentration of AB. Substituting for p 
from (10) into (19) and using the trace identity 

TrABC = TrBCA (20) 

one obtains 

Mx = (AB) T r p A V "I7AB z * / A B * e - ^ i ^ A B a ' + 

(B')TrpB e«VB**ZB,V<wi7B»*' (21) 

Next, substitute for p in (21) using (16) and (17) and recall 
that 

eiu\f,*Ii'e-iuiI*t = / V ' » i ' (22) 

This procedure yields the following expression for Mx: 

Mx = V2(AB)Trp'AB(Z+
ABe«V + / - A B e- i u i J ) + 

V 2 ( B O T r P ^ ( Z V e 1 1 V + /-B .g-"- i ' ) + 

V 2 (AB)Tr^+ A Be i t u2- 2 u i»Z-A B .+ p- A B
e - i ( w 2-2V 4 / +

A B } + 
1 / 2 (B ' )Tr^ t B ' e i ( "2- 2 w i , *Z- B . + p ^ V ' V ^ i ' Z V } + 

V2(AB)Tr{p+ A Be i w2'Z\B + p-ABe-""2 (z-AB} + 

V2(BOTrIjO+01C1VZ+B. + ^ 8 " ' " ! ' / - J 1 ] (23) 

The absorption, Ab, at frequency 0)2 is given as the x com
ponent of magnetization out of phase with the rf field in the 
x direction; that is, we collect the terms in (23) proportional 
to sin wit noting that 

e*iu2* = cos u)2t + i s in co2t 

e-iu2t - c o s W z j _ 1 S i n U2J 
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to give 

Ab(W2) = ^ { * T r p + A B / +
A B - *Trp-A B / -A B} + 

^ { i T r p ^ ' / V - z T r p - 8 ' / ^ , } (24) 

To illustrate the use of (24), we now apply it to the calcu
lation of the absorption at ^2 for the exchanging system (5). 
In the spin product basis representation, the states are 

AB s ta tes B s ta tes 

^l = aAaB ^ 5 = <*B» 

4>2 = atp i/)6 = /3 

!/I3 = / 3 a 

ipi = W 

Employing the relationships 

(25) 

Trp/± = X?tiI\t 

U 3 

P\i = P \ / 

P* Ui = aUS + ibi,i 

then the nonzero terms in the absorption are 

(concn) 

(26) 

(27) 

(28) 

Ab(C2) = tsaftilZipWu - 2>-*,/-fc,} 

so using (27) and (28), we find that 

Ab(w2) = (concn) ^ ] - S j 
i>3 

(concn)Y,-Imp*i,j 

(29) 

(30) 

Applying (30) to exchange system (5), we obtain 

Ab(w2) = 

-(AB)Zw [p+AB
2,i + p + A B

3 i l + p + A \ 2 + 

p + A \ 3 ] - (B')/wp+ B '6 > 5 (31) 

Notice that, in the p+/j summed in (31), m(i) — m(j) = —1 
always. 

Density Matrix Equations for p+, p~, and p' 

To find the density matrix equations for p' and p*, sub
stitute for p from (16) and (17) into (14) and (15) and col
lect all terms with the same time dependence into separate 
equations. 

0 = z[p'AB,3c0
AB] - l-f[rKh + rAB, P'AB] + 

R(p'AB - p0
AB) + Ep'AB (32) 

0 = i[p'B', 3C0
B'] - i / J / V + /-B„ p'B '] + 

R(p'B' - p0
B ' ) + Ep'B' (33) 

z(w2 - W1)P^2 = z[p+AB, 3C0
AB] -

i^\l* +J' 0+ABl - M [ r - n ' I + 
2 LJ AB + •" AB' P J 2 L ABi P ABJ

 + 

i ?p + A B + E p + A B (34) 

z'(w2 - W1)P+5 ' = z [ p + B \ 3€0
B ' ] -

^ [ r B . + r B „ P + B ' ] - ^ [ 7 V , P ' B ' ] + 2 L- B ' 2 LJ B' 
i?p+

B, + Ep\, (35) 

?(w2 - w t)p-AB = i[p-, K0
AB] -

^JfZ+ + 7" o"ABl - 1^2Il* o'l + 
2 LJ AB ^ ^ AB) P J 2 L A B ' P J 

# p - A B + £p" A B (36) 

The equation for p~B' is written equivalently to (36). Actu
ally as discussed above, we shall not need p~ since the ab
sorption can be written entirely with p+ terms. Note that 
the relaxation terms in (34) to (36) are in just p+ or p~ not 
P+ ~ Peq- Finally as written in (8), EpAB is bilinear. It 
would appear to be a function of p+p'. This is not the case 
as will shortly be demonstrated. 

Solutions of the Equations for an Exchanging System, 
Double Resonance 

The solutions of the set of equations for p', (32, 33), the 
CW high power spectrum, have been described by us be
fore.11 This procedure involves writing the coupled equa
tions for all the density matrix elements, including those in
volving Aw = 0 ± 2. The equations are linearized by means 
of dropping certain contributions to the Ep term, the Selec
tive Neglect of Bilinear Terms (SNOB) approximation. 
SNOB linearization is accomplished in the following way. 
The diagonal elements of p' in the product representation 
are written as shown in (37), where N is the number of 

(»w Ip'apl nm) 
_1_ 

(nm I Ap' s p I nm) (37) 

states, and sp stands for species. The first term in (37) is the 
infinite temperature probability of the diagonal matrix ele
ment. In linearizing Ep, all terms which are products of off-
diagonal matrix elements (eq 38) or a product of an off-di-

n'AB _/B* ~ ft l J (38) 

agonal matrix element and the diagonal element Ap'AB,-,,-
are dropped (eq 39). Investigation shows that the terms 

P'B''-'(F" + ApAB*-*) ~ P'B-'/NA (39) 

which are kept are a factor of 105 to 106 larger than those 
discarded. 

In similar fashion to the above SNOB approximation for 
p', we can linearize the second-order terms in eq 34 and 35 
which appear in Ep+. The maximum value which p+ ele
ments take, both diagonal and off-diagonal is ca. 10 - 6 . 
Then the following approximations are valid. 

n ' A B n ± B ' ^ , ± B ' / x r U j . 7 
P i,iP ft, I P 6 , | / J V A B K r l 

0 ' A B n ± B ' ^ n 
P i,jP ft, I u 

(40) 

With this linearization in mind, consider the equation for 
JS+ A B I ,2 . As stated before, we require the p+ elements to 
solve for the absorption. Also for brevity we can leave off 
the species label from the density matrix'elements since the 
states already indicate which molecule is referred to, (1-4 
for AB and 5,6 for B'). We obtain the equation for p+i,2 by 
taking the (11| 2) matrix element of eq 34. The result is 

0 = i J lE 2 ~ Ei - (w2 - Wj)]P+J12 + 

^ P Y 3 + f (P+,,i - P+
2>2 - P+3,2 + P*M) + 

^P1Ui) + T~ [(P' i . l + P ' 2 > + 5 , 6 + 
^ I ~ A B 

( P + I 1 I + P + 2 , 2 ) P ' 5 , 6 - P + 1 , 2 ] -

1 1 1 
+ — + P+l,2 + ^ P + 3 , 4 (41) 

1 IA 

where £, is the diagonal element 3Co/,/. Using 
the linearization scheme described above reduces the 
term in 1/TAB to eq 42, which is independent of the state of 
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V2P
+S16 - P+i,2 (42) 

p'. This will be true for all 20 density matrix equations de
scribing the p + A B and p + B ' elements. Without further com
ment, we will now list in this order the equations for p+2,i, 
p+2,3, p+3,2, P+i,4, and p+4,i. As seen in eq 31, p+2,i contrib
utes directly to the absorption, the p+2,3 and p+3,2 are Am 
= 0 transitions, and p+i,4, p+4,i are Am = ±2 transitions. 

Table I. NMR Parameters AB + B' 2 AB' + B 

0 = i \[Ei -E2- (w2 - o>i)]p+
2>1 I^Ps.i 

+ fH-P+i,i + P\i + P+2,3 - P\i\ 

+ ^ f [ -P ' l . l + P'2,2 + P'2,3]} 

+ — V/-iP\,s ~ P+2,il 

P+2,l + P+4,3 

'AB 

1 1 1 

•"IB L 2B-I L TlA. 
(43) 

0 = ij[E3 -E2- (w2 - O)1)Jp
+J13 

+ ^[P\i ~ P+1,3 + P+2,4 - P+4)3] 

+ ^ ^ 2 . 2 " P+8.3] + f [P'2.4 " P'l.3]} 

AB 

1 

"P+2,3 

1 J_ J_ 
L r2 B T1B r2A r1A 

P 2,3 (44) 

0 = ij[E2 - E3 - (w2 - o>i)]p+
3,2 

+ ^ [-P+1,2 + P+3,l - P+4,2 + P+3,4l 

" A B l 

2 ' 
1 

-P+2,2 + P+3,3] + ^ [ P ' 3 . 4 ~ P'l.2]} 

-P 3.2 
1 1 1 1 

— + T=- + T ^ - + — 
IA T. 2A 

P+
3,2 (45) 

0 = Ij[Ei - E x - (w2 - W 1 ) IP + L 4 

+ % P + 1 , 2 + P+I1 3 - P+2,4 - P+3,4l ^ ^ 

J— J_ 1 , 1 
^1A ^2A ^tB T2B 

P \ i \ 

0 = IJ[E1 ~ Ei - (w2 - W1)Jp^9! 

+ %[-p*2,l - P+
3,l + P+4,2 + P+4,3] 

+ ^ [ P ' 4 , 2 - P'4,3 + P'2,1 + P'3,1]} 

(46) 

— P 4,1 
AB 

_L _L J_ + J_ 
T-IA T2A T 1 B r 2 B 

P+4,l (47) 

In a typical double resonance experiment, a system is 
strongly irradiated at u\ and scanned by the weak rf field 
«2. First the coupled density matrix equations (32, 33) are 
solved for all the p ' density matrix elements at frequency 
oji. Then these elements are substituted into the linearized 
set of coupled equations for p+ (eq 43-47) and solved with 
standard matrix inversion techniques. The absorption at o>2 
is obtained as shown in eq 30. 

The derivation given above together with the different 
approximations used is completely general for double reso
nance NMR line shapes of any exchanging system or set of 

Relative shifts, Hz ( 7 A B = 1 Hz) 
A (of AB) +5 
B (of AB) 0 
B' (free) - 5 

All T1 and T2 values = 2.0 sec 
[AB] = 2[B'] 

TAB = 2T B ' 

coupled exchanging systems as long as «1 is strong and a>2 
weak. 

II. Density Matrix Interpretation of Effects in Double 
Resonance 

There are three observed effects by which NMDR spec
tra differ from single resonance spectra: (a) there are 
changes in peak amplitude ratios; (b) additional splitting is 
sometimes observed; and (c) there may be changes in line 
shape because of exchange phenomena not seen in single 
resonance CW NMR. 

The changes in amplitude are best discussed by compar
ing eq 43 with the p2,i element describing the low power 
CW spectrum. This spectrum would result by letting $6\ —• 
0 (eq 48). The principal difference thus seen between eq 43 

i[[Ex • - E 2 - (w2 - W 1 ) I P + _ ^AB 
-1 2 

f [-PNl,t + P~2|2]} + y~[%P\,, ~ 
* / TAB 

1 1 1 ' 

-^1A 5" IB ^2B-
P*2.1 +J 

P3,1 + 

- P+2,l] 

IA 
"P*4,3 (48) 

and 48 lies in the coupling to the rf field which is 

^ h p " l t l + P e \ 2 ] (49) 

for the low power single frequency response and 

!A [—p'1,1 + p'2,2 + p'2,3] (50) 

for the double resonance absorption. The other difference 
between eq 42 and 48 lies in the additional term 

2 [P+l,l + P+2,2 + P+2,3 _ P+4,J (51) 

This contribution (eq 51) appears because we have chosen 
the product representation rather than one which diagonali-
zes 3CAB + tf\lx. The principal effect of the excluded terms 
is one of splitting the first-order absorption peaks in the 
limit of very large ^ i . 2 0 Temporarily ignoring the peak 
splittings, we conclude that the Overhauser like change in 
amplitude of the first-order double resonance peaks relative 
to the equivalent low power single resonance peaks is given 
by the ratio of the amplitude terms of eq 43 to 48. 

Now we return to the extra line splitting phenomena in 
double resonance spectra which in most cases will appear 
only as a line-shape distortion. To obtain a qualitative feel
ing for the effect assume no exchange (T ~ °°) and J A B / 
(OJOA - OJOB) « 1. The energy levels for 3C0

AB which we 
have called Ei) and allowed Am = ±1 transitions are shown 
to first order in Scheme I and eq 52. NMR parameters used 

(52) 

E. 

\ — 

2 = 

3 = 

4 = 

V2(W0A ~ W1 + W0B - W1) + ̂ AJi 

V2(^0A - W1 - W0B + W1) £S 

V2(-w0A + W1 + w0B - W1) - -** 

V>(-W0A + W j - W0 B + Wj) + -I* 

below are listed in Table I. The resonance condition for 
p+2.i is met at its maximum values. As seen from eq 43, this 

Journal of the American Chemical Society / 97:14 / July 9, 1975 



3885 

.•• 
"-..' 

• • • * * * • • • • • • — — . , 

Figure 1. NMDR line shape, B resonance of AB system, JAB = 4 Hz, 
^A1B = 10 Hz, T\ = T2 = 2 sec, when A peak at +7 Hz is irradiated at 
y\ = 0.5 Hz. Center of AB system defined as 0 Hz. 

Scheme I 

"OA + ^ 
N1. 

1 --*• 3 2 

M 
1 
0 
0 

- 1 

- O A - ^ f 
S 
— • 4 

-s
-

1 a a 
2 a£ 
3 /3a 
4/3/3 

- O B + ^ 
N, 

1 —* 2 3 

- O B - ^ f 
S 

-* 4 

condition is approximately realized when the denominator 
on the rhs of (53) approaches zero 

P 2,1 
max 

i[Ei -E2- (w2 - W1)] - h p + ~ + - r -1 
L J 1 A - ' IB ^2B-I 

(w 2 - (J)1) ~ 0 

that is 

£< — £o 

(53) 

(54) 

After substituting for the £"s from (52), we find that 

O)9 w OB 
4. £ i £ 

2 
which is just the location of the usual first order peak de
rived from the 1,2 transition. The same considerations apply 
to the other transitions. 

Consider next with the same provisos as above the reso
nance condition for p+2,3 (Aw = 0). We now find that 

(o 

and substituting from (52) 

W, — W OA 

W1) 

+ W1 

0 

OB 

(55) 

(56) 

The amplitude for the p'2,3 transition will be large when 
p'2,4 or p'i,3 have their maximum values, that is when 

W1 = W OA 
"AB (57) 

as seen from Scheme I. Substituting in (56) for o>i using 
(57) we find 

1^AB (58) 

Thus on irradiating strongly (OM) near the 1-3 or 2-4 tran
sition for the A proton, there will be a peak in the o>2 spec
trum near the 1-2 or 3-4 positions, respectively, for B. The 
resonance condition on p+3,2 is just the opposite to that of 
p+2,3. The application of o>i to the 1-2 or 3-4 transitions in
duces o)2 transitions near the 1-3 or 2-4 peaks. We use 
"near" advisedly, for the terms appearing in eq 45 shift the 
Aw = 0 peak 02 = OJOB + ( - / A B / 2 ) from the usual first-
order peak arising from p+

2,i- Depending on the size of </], 
these two peaks can be seen separately or combined. Exam
ples are discussed in section III. 

We now consider the Aw = 2 transitions determined by 
the amplitude of p+i,4 and p+4,i- p+i,4 can be thrown out 
for, as shown in eq 46, it does not couple to any p' terms. On 
the other hand, p+4,i couples to all four resonant peaks. 
Thus the resonant condition, see (47), corresponds to 

P + 4 , l = 
max 

-»i\p\.i + P'i.a -P'i,\- P's.il 

2i[Ex - Ei - W2 + W1] - [— + — + 7 - + 7 - I 
L- 4 IA 1IK l IB - ^ B J 

and 

w, W,u + W n n - W "OA 

(59) 

(60) 

The 0)2 response is maximized under the following sets of 
conditions 

w i = w0B - ( J A B / 2 ) and w2 = WOA + ( < W 2 ) 

W1 = w0B + ( J A B / 2 ) and W2 = w0A - (JA B /2) 

(61) 

^ i = WOA - ( < W 2 ) and w2 = w0B + (JA B /2) 

W1 = w0A + ( jA B /2) and w2 = w0B - (JA B /2) 

Again note that the o>2 condition is only approximate and is 
shifted slightly by v&\. 

Finally we wish to show that, if instead of the absorption 
at o)2 we consider the component of Mx which has the time 
dependence sin (2o>i — O)2)?, we find from eq 23 that the 
amplitude of this time dependence is as given in eq 62. No-

Ab(2w4 - w2) = (AB)/m[p+
l i2 + p+

1>3 + p+
2>4 + 

p+
3i4] + (B)/m[p*5i8] (62) 

tice how, in the 2o>i — 0)2 response, the p + , j terms all have 
w(/) — m(j) = + 1 . From eq 41, we see the p+i,2 is coupled 
to p'i4 which only becomes large when 

W1 = (w0A + w0B)/2 (63) 

the so-called double-quantum resonance. The resonance 
condition for p+i,2 from eq 41 is 

W2 = - [ w 0 B + U A B /2 ) ] + 2W1 (64) 

and on substituting from (63) 

W2 = w0A - (JA B /2) (65) 

In a similar manner, we obtain a resonance at each of the 
first-order peak positions for the other elements of p + , 
P+1,3, p+2,4, and p+3,4. Thus for 0)1 at the center of the AB 
quartet, there is a difference frequency absorption. 

III. Double Resonance Line Shapes 

Double resonance line shapes are displayed in Figures 
1-7. The NMR parameters used in these calculations are 
listed in Table I. We now discuss for each case the results 
for the slow exchange limit and then consider effects due to 
exchange. 

As explained above, irradiation of the 1-2 transition (0.5 
Hz) should produce one extra peak in the neighborhood of 
the 1-3 transition (due to AA/ = 0) and another near the 
2-4 (A resonance) due to AM = ±2 . Actually this effect 
can be seen very clearly for an AB system with J A B = 4 H Z 
and 5A,B = 10 Hz. When the A peak at +7 Hz is irradiated 
at *\ = 0.8 Hz, there is a distinct doubling of the B reso
nances, shown in Figure 1. However in general one often 
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Figure 4. Double resonance AB line shapes, system 5, v\ = —5 Hz (B'). 
Left,xi = 0.3 Hz. Right,»\ = 0.4 Hz. rvalues indicated. 

( C ) 

(d) 

I 
• • 

V 
.S 

T sec 
• 955 
• 9.55 

(e) 

" * = 1 • — ' " • - " " " ' " 1 = " - " • " • - I - * " " -
- 5 O S * 

Figure 2. NMR line shapes, system 5, slow exchange limit, T = 6000 
sec: (a) double resonance, v\ = +0.5 Hz1^i = 10 - 5 Hz; (b) double res
onance, v\ = +0.5 Hz, # = 0.3 Hz; (c) double resonance, as in b with^i 
= 0.4 Hz; (d) double resonance, i>i = - 5 Hz (B'), *\ = 0.3 Hz; (e) 
double resonance, as in d with,*! = 0.4 Hz. 
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Figure 5. Comparison of double resonance line shapes for B of AB at 
different T values when B' is irradiated, v\ = —5 Hz: (a) limiting low 
rf, Jr1 = 10~5 Hz; (b) r , = 0.3 Hz; (c) n\ = 0.4 Hz. (•) r = 955 sec; 
( • ) T = 9.55 sec. 

Figure 3. Double resonance line shapes, system 5, A absorption, v\ = 
+0.5 Hz (B). Left, J-I = 0.4 Hz. Right, -Oi = 0.3 Hz. T values are la
beled on diagram. 

observes line distortions and broadening effects as demon
strated for our exchanging system (5) in Figures 2 b,c and 3 
a-c, which show the A resonance when the 1 —• 2 transition 
of B (+0.5 Hz) is irradiated at different rf fields. At slow 
exchange, there is a definite broadening at +4.5 Hz and 
flattening at +5.5 Hz compared with the low rf spectrum. 
At faster rates of exchange, these four resonances in the +5 
Hz region should coalesce progressively to one line. In fact 
by T = 0.76 sec such signal averaging gives a narrower line 
in the>i = 0.4 Hz spectrum than in the low power response 
(Figure 3). In this calculation, the effects of exchange on 
the B' resonance in both single and double {y\ = +0.5 Hz) 
resonance spectra are about the same and thus not dis
played. 

Next, consider what happens to the double resonance line 
shapes when B' is irradiated at different rf fields (Figures 2 
d,e and 4). The radiation burns a hole (with a small blip at 
the center) in the B' peak, with considerable saturation in 
the wings (Figures 2 d,e). At slow exchange, the B reso
nance is independent of the y\ rf field. However beginning 
with r < 10 sec transfer of saturation by exchange causes 
substantial changes in the B resonance as a function of the 
exchange rate, particularly in the slow exchange region. Ac
tually a comparison of single with double resonance line 
shapes (Figure 5) shows that of the two the double reso
nance B line shape is by far the more sensitive to changes in 
exchange rate. Even comparing B line shapes for r = 9.6 
sec with T = 960 sec, the single resonance absorptions are 
nearly identical, whereas those for.^ = 0.40 Hz show a 10% 
difference in intensity. Experimentally the ratio of the A to 
B maxima obtained under double resonance conditions (B' 
irradiated) should be a sensitive parameter for measuring 
slow exchange rates. This result is the CW equivalent to the 
time dependent saturation recovery technique due to Hoff
mann and Forsen.21 
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Figure 6. Single resonance, low rf line shapes, system 5, at different x's. 
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Figure 7. Pseudoabsorption for system 5 at different T values, 
+2.5 Hz. Left, i, = 0.3 Hz. Right, », = 0.4 Hz. 

Figure 6 shows N M R line shapes for exchanging system 
(5) at low rf single resonance. These curves are shown for 
purposes of comparison to the double resonance line shapes 
(Figures 2-5). 

Finally the pseudoabsorption, the response at 2u>\ — o>2, is 
illustrated in Figure 7 for y\ = 0.4 Hz, v\ = +2.5 Hz, the 
center of the AB quartet. Here, since the magnitude of the 
P+1,2, P+1,3, P+IA, and p+3,4 terms is determined by p'i,4 
(see eq 41), the pseudoabsorption is down roughly by the 
ratio of the double quantum transition p'i,4 compared with 
a typical 1,4 resonance. Notice here that increasing the ex
change rate substantially lowers the absorption intensity. 

Conclusion 

What we have shown in this paper is that NMDR line 
shapes for exchanging systems are in some cases more sen
sitive to the rate in the slow exchange region than under sin
gle resonance conditions. This should have the effect of ex

panding the range of rate constants which can be extracted 
from NMR line shapes by a factor of 102. 

Experiments to determine exchange rates with double 
resonance techniques will be most useful when the transi
tion irradiated is coupled to that (those) observed by means 
of an exchange process. Needless to say, all this supposes 
that modern N M R equipment has the capability to produce 
precisely defined and controlled w\ and o)i irradiation. 

Finally, in this paper, we have used a relaxation operator 
appropriate for intermolecular relaxation. Effects arising 
from intradipole relaxation (Overhauser effect) are not con
sidered here but will be so in later work. 
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Appendix I. Glossary of Symbols 
absorption 
chemical species 
product representation wavefunctions 
exchange operator 
Hamiltonian laboratory frame 
Hamiltonian rotating frame 
labels of spins 
relaxation operator 
relaxation times nucleus / 
density matrix laboratory frame 
density matrix rotating frame, two rf fields 
density matrix, rotating frame, one rf field; all val
ues 
perturbation term in p due to second rf field 
preexchange lifetime of species 
frequency, chemical shift 
rf frequencies, rad/sec 
rf power, rad/sec 
rf frequencies, Hz 
rf power, Hz 
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